skip to main content


Search for: All records

Creators/Authors contains: "Koay, Eugene J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Elliott Wave principle is a time-honored, oft-used method for predicting variations in the financial markets. It is based on the notion that human emotions drive financial decisions. In the fight against the COVID-19 global pandemic, human emotions are similarly decisive, for instance in that they determine one’s willingness to be vaccinated, and/or to follow preventive measures including the personal wearing of masks, the application of social distancing protocols, and frequent handwashing. On this basis, we postulated that the Elliott Wave Principle may similarly be used to predict the future evolution of the COVID-19 pandemic. We demonstrated that this method reproduces the data pattern for various countries and the world (daily new cases). Potential scenarios were then extrapolated, from the best-case corresponding to a rapid, full vaccination of the population, to the utterly disastrous case of slow vaccination, and poor adherence to preventive protocols.

     
    more » « less
  2. We present a mechanistic mathematical model of immune checkpoint inhibitor therapy to address the oncological need for early, broadly applicable readouts (biomarkers) of patient response to immunotherapy. The model is built upon the complex biological and physical interactions between the immune system and cancer, and is informed using only standard-of-care CT. We have retrospectively applied the model to 245 patients from multiple clinical trials treated with anti–CTLA-4 or anti–PD-1/PD-L1 antibodies. We found that model parameters distinctly identified patients with common ( n = 18) and rare ( n = 10) malignancy types who benefited and did not benefit from these monotherapies with accuracy as high as 88% at first restaging (median 53 days). Further, the parameters successfully differentiated pseudo-progression from true progression, providing previously unidentified insights into the unique biophysical characteristics of pseudo-progression. Our mathematical model offers a clinically relevant tool for personalized oncology and for engineering immunotherapy regimens. 
    more » « less
  3. Abstract

    While plasma concentration kinetics has traditionally been the predictor of drug pharmacological effects, it can occasionally fail to represent kinetics at the site of action, particularly for solid tumors. This is especially true in the case of delivery of therapeutic macromolecules (drug‐loaded nanomaterials or monoclonal antibodies), which can experience challenges to effective delivery due to particle size‐dependent diffusion barriers at the target site. As a result, disparity between therapeutic plasma kinetics and kinetics at the site of action may exist, highlighting the importance of target site concentration kinetics in determining the pharmacodynamic effects of macromolecular therapeutic agents. Assessment of concentration kinetics at the target site has been facilitated by non‐invasive in vivo imaging modalities. This allows for visualization and quantification of the whole‐body disposition behavior of therapeutics that is essential for a comprehensive understanding of their pharmacokinetics and pharmacodynamics. Quantitative non‐invasive imaging can also help guide the development and parameterization of mathematical models for descriptive and predictive purposes. Here, we present a review of the application of state‐of‐the‐art imaging modalities for quantitative pharmacological evaluation of therapeutic nanoparticles and monoclonal antibodies, with a focus on their integration with mathematical models, and identify challenges and opportunities.

    This article is categorized under:

    Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease

    Diagnostic Tools > in vivo Nanodiagnostics and Imaging

    Nanotechnology Approaches to Biology > Nanoscale Systems in Biology

     
    more » « less